Context Quantization based on Minimum Description Length and Hierarchical Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Description Length and Psychological Clustering Models

Clustering is one of the most basic and useful methods of data analysis. This chapter describes a number of powerful clustering models, developed in psychology, for representing objects using data that measure the similarities between pairs of objects. These models place few restrictions on how objects are assigned to clusters, and allow for very general measures of the similarities between obj...

متن کامل

Model Selection Based on Minimum Description Length.

We introduce the minimum description length (MDL) principle, a general principle for inductive inference based on the idea that regularities (laws) underlying data can always be used to compress data. We introduce the fundamental concept of MDL, called the stochastic complexity, and we show how it can be used for model selection. We briefly compare MDL-based model selection to other approaches ...

متن کامل

K-mean Based Clustering and Context Quantization

In this thesis, we study the problems of K-means clustering and context quantization. The main task of K-means clustering is to partition the training patterns into k distinct groups or clusters that minimize the mean-square-error (MSE) objective function. But the main difficulty of conventional K-means clustering is that its classification performance is highly susceptible to the initialized s...

متن کامل

Inferring Informed Clustering Problems with Minimum Description Length Principle

...............................................................................................................................iii Acknowledgements.............................................................................................................. iv Table of

متن کامل

Minimum Description Length Criterion

he intelligibility of speech in communication systems is generally reduced by interfering noise. This interference, which can take the form of environmental noise, reverberation, competing speech, or electronic channel noise, reduces intelligibility by masking the signal of interest. The reduction in intelligibility is particularly troublesome for listeners with hearing impairments, who have gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATEC Web of Conferences

سال: 2016

ISSN: 2261-236X

DOI: 10.1051/matecconf/20165601001